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S U M M A R Y  
The controversy over the induced pressure gradient in shear flow is re-examined in the context of general bounding. 
It is shown that the results reported by Ludford and this author in two earlier papers are indeed typical near the 
leading edge, However far downstream they are only valid in the presence of walls. In particular two new effects arise; 
for weak bounding logarithmic terms appear in the inviscid pressure and a resonance with the first eigensolution 
occurs. For the symmetric case Toomre and Rott's result is recovered. 

I. Introduction 

The controversy over the boundary layer on a flat plate in shear flow originally started by 
Li [1] has received the attention of several authors. Suffice it to say that from the beginning 
there were two separate, even though sometimes confused, issues involved. The first concerned 
the existence of an induced pressure gradient outside the boundary layer. Such a pressure 
gradient has fundamental significance because a modified pressure field consequently affects 
the skin friction, the heat transfer, boundary layer separation and the laminar stability charac- 
teristics of the flow. This question was affirmatively answered when Murray [2], by careful 
matching showed that the revised solution given by Li was correct for the purely mathematical 
problem of unbounded shear flow. 

However Glauert's [3] second criticism remained unanswered; namely whether Murray's 
solution played any significant role in realistic situations where the incident shear flow is 
necessarily bounded. Later Toomre and Rott [4] attempted to resolve the issue by actually 
determining the disturbance to the inviscid flow due to the first order (Blasius) boundary 
layer for a bounded shear flow Uo+Ay for lYl < h and Uo+Ah for [y[ > h, the plate lying 
along the positive x-axis. Their main result was that the Li-Murray pressure gradient is accurate 
in only a very limited region near the leading edge. This seemed to resolve the remaining 
question and Van Dyke in a recent account of the controversy [5] effectively declared the 
matter closed. 

This proved premature in view of criticisms raised by Koch et al. [6] while addressing 
themselves to a different question. They questioned the practicality of the profile used by 
Toomre and Rott. Kinks, such as the one at y - 0  in their case make their profile unrealistic 
and its symmetry rules out certain key effects a priori. 

Accordingly, Ludford and Olunloyo [7] returned to the Couette profile introduced by 
Glauert (who only gave it an ad hoc treatment), namely Uo + Ay for bY[ < h, the walls at y = _+ h 
moving with the fluid. Their conclusion was that the Li-Murray solution for unbounded shear 
flow does not play the main role for the bounded shear they considered. They showed that 
the induced global circulation predicted by Glauert does in fact occur contributing an O (x ~) 
term to the leading edge lift being more important than Li-Murray's O (x§ Furthermore in 
this neighborhood, the leading term for the drag is provided not by Li-Murray but by the 
bounding it being O (x ~) compared with Li-Murray's O (x). By setting the plate off the axis of 
the channel it was further shown [8] that local circulation could be induced around the leading 
edge of the plate by the walls bounding the shear. Such a tocal circulation gives an O (x ~) lift 
in this region while the resulting distortion of the induced global circulation now provides 
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O (x -~) drag. Based on their analysis it was then predicted that no new effects could arise from 
other forms of bounding. 

Such a generalization would not be suspect were it true that shear flows as met in practice 
are always bounded by walls. In fact two forms of bounding are generally used for finite shear 
and Goldstein in his review article [9] proposed replacing Murray's linear shear profile with 
one which levels off far away from the plate on either side into a uniform flow; this being a 
weaker form of bounding than that proposed by Glauert. [By weak bounding it is implied that 
not more than one wall is used in limiting the shear. For strong bounding the shear must be 
restricted on both sides by walls.] One essential difference between the two is that for strong 
bounding (i.e. the latter), the disturbance streamfunction is independent of the shear (see [7] 
for example) whereas for weaker forms of bounding it is a function of the shear (cf [4]). For 
completeness, it is essential to confirm these predictions under a more general form of bounding. 

We therefore look for a model that incorporates both forms of bounding found in practice. 
In the present study the shear flow Uo + Ay is restricted to the region - ah < y < h being limited 
by a wall moving with the fluid at y = h and .by a uniform flow at y = - ah (Fig. 1) where h ~> 1 
but finite. Note that this is not a serious limitation since as pointed out in [7] the effects we are 
interested in will always persist, if present, even when the bounding recedes to infinity. The 
plate has been displaced off the centerline to incorporate effects of asymmetry in the bounding. 
A straight forward attack leads to what appears to be an intractable Wiener-Hopf equation. 
Instead an asymptotic solution is constructed from superposition of two more fundamental 
problems each of which admits exact solution through the Wiener-Hopf technique. 

/ /  / x /  / / / / / . " / / / / ~  

Figure 1. Flow geometry. 
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Near the leading edge the effects predicted in [7] are confirmed. However local circulation 
can now be induced, even in the symmetric case, by arranging different forms of bounding on 
either side of the plate. 

On the other hand, the behavior far downstream on either side of the plate is strongly 
influenced by the type of bounding seen by that side of the plate. For the case of symmetric 
bounding the pressure gradient below the plate becomes a vanishingly small multiple of the 
Li-Murray value, confirming Toomre and Rott's result while on top of the plate, the result 
in [7] is recovered. For our case we find that the asymptotic series for the inviscid surface 
speed above the plate starts with an x ~ term and decreases in powers of x the next term being 
O(x-~), and so on. Below the plate the surface speed decays like x --~ followed by inverse 
powers ofx ; in addition log terms like x - 3 log x for the first time appear. Such log terms induce, 
through matching, corresponding terms in the boundary layer. 

In general, the pressures would be different on both sides of the plate (even for the same type 
of bounding provided there is asymmetry) and an induced global circulation is set up on 
equalizing pressures at a station on the plate far downstream. Such an induced global circula- 
tion is considered here. Far downstream the asymptotic expansion for the inviscid speed is a 
constant above the plate; below the plate it starts offwith x-  1 followed by terms like x-  a log x 
and inverse powers of x. The forcing function associated with the leading term (below the plate) 
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is x -~ and because its exponent ( - �89 coincides with the first eigenvalue for the eigensolutions 
in the boundary layer (cf Libby and Fox [10] ), a curious resonance occurs. Such a resonance 
which is independent of the shear can be simulated whenever the flow is weakly bounded 
(including Li-Murray case) by terminating the plate far downstream and pumping the re- 
combined streamlines further downstream. 

Above the plate no such effect is found and it is clear that such resonance was suppressed in 
[-7] and 1-8] by the presence of walls; it is also missing in Toomre and Rott 's case because the 
dynamic symmetry of their profile rules out induced circulations. 

2. Formulation of the boundary value problem 

The problem is to find an inviscid flow field satisfying 

v(x,_+O)=+Cx -~ for x > 0 ;  v(x,h)=O foral l  x ,  (2.1) 
v(x, y)--*O as y ~ - o o  

and tending far upstream to the shear flow bounded by the uniform stream (cf. Fig. 1). Here the 
small constant 

C = �89 ~ , 13 = 1.7208 

comes from the Blasius solution for the boundary layer. In addition to the forementioned 
boundary conditions we must enforce the physical requirement that (a) the normal velocity v 
and (b) the streamwise pressure gradient be continuous across the interface separating the 
shear and the potential flow regions. As pointed out by Toomre and Rott, such matching 
should be carried out at the (unknown) displaced location of the interface boundary ; but under 
the presumption that the disturbance is infinitesimal (cf [4] ) the matching can be carried out 
along the line y = - a h .  

We introduce a disturbance streamfunction 0, so that the velocity components are 

u=Uo+Ay+O,;  v = - O x .  
Since the vorticity in the disturbed flow remains constant at - A ,  the function 0 satisfies 
Laplace's equation with the boundary values 

O(x, h) = O, (2.2a) 

0 (x, + O) = ~ Ch~9(x) for x < O, (2.2b) 
- (-T2Cx++Oo for x > O ,  

and 
0 for x < 0 ,  

AO,(x,O)= Chef( for x > O .  (2.2c) 

We have hereby introduced two unknown functions f(x) and 9 (x) on the positive and negative 
x-axis respectively; the integration constant 0o added for x > 0 in condition (2.2b) corresponds 
to the addition of a (global) circulation around the plate. 

To determine 0 we can take a Fourier transform of the governing equation and the ap- 
propriate boundary values but because the boundary conditions on y = 0 are mixed this leads 
to a Wiener-Hopf  problem which in this case appears intractable. 

Alternatively we can write the total streamfunction as 

~* = 71" + 7 ~c = ~7*,+ fiT*,,+ 7 *c (2.3) 

where ~ and fi are scalars to be determined and where 7 'c representing the second order global 
circulation satisfies the boundary conditions (2.1) with C=0 .  Like ~c, 5u and 7Ju satisfy 
Laplace's equation and in fact 

~1I = UoY+�89 2 +01 (2.4) 

is the total streamfunction for the profile shown in Fig. 2. 
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Figure 3. 

For this problem it is easily verified that 0~ satisfies Laplace's equation and the boundary 
values (2.2) with ~'o = 0. In addition we have 

~ (x, - ah) = 0 for all x .  (2.5) 

On the other hand we can also write 

~'n = ~:oY + q'2 (2.6) 

as the streamfunction for the profile described by Fig. 3. Here again ~2 is a harmonic function 
satisfying the boundary conditions (2.2) with ~o = 0, and decays to zero as y ~  - ~ .  

Problems for. ~ and 02 are special cases of the general problem treated by Ludford and 
Olunloyo [8]. ~1 can, for example, be evaluated by putting A = Uo/ah into their result for the 
disturbance streamfunction. Moreover since their disturbance streamfunction is independent 
of the shear 02 then corresponds to their ~ in the limit of their lower wall receding to y = - ~ .  
However while Oz may be a special case of their problem its value cannot be easily deduced 
from their results. Indeed it has enough peculiar difficulties to warrant special attention. 
[~2 also arises in a recent treatment of the inlet problem by Kapila, Ludford and Olunloyo [11].] 

Thus we proceed to construct the solution to the profile in Fig. 1, by taking a linear combina- 
tion of the two special cases discussed above. For  such a superposition we must ensure that all 
necessary boundary conditions are preserved and the vorticity in the disturbed flow must 
remain constant at - A .  

This latter condition demands that A = ~A 1 = ~ Uo/ah, while the former gives ~ + fi = 1. Hence 

= A / A ~  = A a h / U  o ; fi = 1 - A a h / U  o . (2.7) 

Note that continuity of the normal velocity along the line y = - a h  in Fig. 1 is guaranteed by 
the fact that it vanishes identically everywhere along the lower wall in the problem for kg~. 
The pressure condition is also asymptotically satisfied everywhere along the line provided 
h ~> 1. When h = 0 (1) this condition is still satisfied far upstream and downstream on the line 
y = - ah but it is now violated near the y axis. It can however be easily shown that even for this 
case the results presented here are still asymptotically valid except near the leading edge where 
the computed coefficients can now only be regarded as estimates "even though it is clear that no 
new effects arise there. 
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The Fourier transform is defined as 

CO(y, = 
oo  

with the inverse 
1 ~ ~176 

~b(x, y) = ~ r  ~)eiCXd{ 
- - 0 0  

where the need for an indentation below the origin will be clear as we proceed. 
If we rewrite ~* as k~* = r + r 

where 
Uo + Ay for -ah  < y < h , 

I Uo- Aah for y <__ ah , 
then 

(2.8) 

. . . . .  a_  _ , s inh  { ( h -  y) 
] t~g l e+pg2e -n~  - ~ m h { - h -  for 0 < y < h,  (2.9a) 

4'** J , , . sinh {(ah+y) ~. ' fie)e Iely (2.9b) Ch-~ = / ~ t O a e + f i e ) - - ~ m h a - ~  - + p(O2e-t- for -ah<y<=O,  
/ 
( f i ( .02r  I~1' for y <= ah (2.9c) 

satisfying the boundary conditions (2.2a, b) with r = 0. Here 

= 

corresponding to 

0 for x < 0 ,  
n ( x )  = 

2h- ~ x ~ for x > 0 .  

01 r and 02 �9 are the transforms of the disturbance stream functions ~0 ~ and qJ2 respectively 
on the negative x-axis. They are found by solving the corresponding Wiener-Hopf  equations 
for r and r Details of the procedure can be found in [8] or [11] and is illustrated in Section 5 
where the induced global circulation is treated. 

To be more precise 

P i e  . Pge (2.10) ,qle - K l e  ' g2e - K2 e 

where 
h ~2 z sinh z (1 - a )h f i e ( z  ) d z  

P1 r ({) = ~ _ ~o K,  e (z) sinh zh sinh azh z -  
(2.11) 

= _ 

F O i~(l +a)h)re 

{(a~_h �89 (�89 i{h a~h) } 
x exp - - -  l n a +  rr - - -  l n ( l + a )  , (2.12) 

Kae(~) = rc F [i~ (l + a) h_) exp l n a  - n ln(1+a)(2.13), 
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and where 
h ~ ~e(z)lzl(cothlzlh, 1) 

P2.(~) = ~ -o~ K2e (z)(z-~) dz 
with 

and 

K2e(~)= r (1 + ? )  

i~h (1 - log  2~z)} x e x p { ~ ( 2 - i l o g ( l ~ l ? ~ - - ) h  ) + ~ -  

(2.14) 

(2.15) 

x exp [ ~ -  k 2 4  ( ~ ( 1 4  Ih + / l o g  (14 ] + ~ ) h ) -  ~-i~h ( l - l o g  ~ ) }  . (2.16) 

The lower subscript | denotes a function of~ that is regular in an upper half plane Im ~ > fi, 
while the lower subscript O denotes a function regular in a lower half plane Im ~ < g. The 
Wiener-Hopf method requires that these two half-planes overlap, i.e./~ > ~. For functions with 
upper subscript 1, the strip of regularity is -re/(1 + a)h< Im ~ < 0, while those with upper 
subscript 2 have their strip of regularity at - e/h < Im ~ < 0.As in all Laplace equation problems, 
in order to guarantee an overlap strip we must treat I~[ as the limit 

lim (4 2 +e2/h2) ~ 
e--*O 

the cuts being ( -  i~, - ie/h) and (ie/h, i~) so that the inversion line (which must lie within the 
strip of regularity) is indented below the origin in the complex i-plane. Finally, in the formulas 
(2.15) and (2.16) the branch cuts for the log are chosen so that for K2| the expression 7c/2 - i log 
((l~l +~)h/~)is zero at ~ = - i e / h  while for K2e the expression ~z/2+i log((l~[ +~)h/e)is 
zero at ~ = ie/h. 

We also note here that it is clear from (2.9) that our disturbance streamfunction will in 
general be a function of the shear A. 

3. Calculation of the pressure 

When quadratic terms in ~ are neglected, the x-momentum equation integrates to give 

p = -p(Uo+ay)(~Oly+flO2y)+PA(~Ol '~-/~@2) 

so that on the x-axis 

p(x, _+0)= -pVoEaOl,(x, +0)+/~02,(x, +O)]+pAEaO~(x, +0)+fl02(x, +0)] .  (3.1) 

It is convenient to write 
p = pOO +pr+pZ 

where 

pOO = �89 - sgn x)pUo C Ix[ -~ T (1 + sgn x)paCx ~ (3.2) 

is the pressure in an unbounded flow without circulation (Li-Murray), and 

-2pUoC [~-12-2-�88189162 ~dy~ , (3.3a) 
o 0  

pr(x, +0)= 
-2pCAah [7~-12-2-�88189162 

- o o  

(3.3b) 
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and 

l p~(x, +_0) = 

�89 - sgn x) p AC Uo 1 h ~ [ Aah (91 (x)-  92 (x) ) + Uo g2 (x) ] 

pCAah} ~ 
+ 2 ~  01r coth ~heir 

oO 

f pCh+ (Uo -Aah) .q2(i~ coth ~heir § ~-~ - ~ ' 
(3.4a) 

�89 -- sgn x) pACUo I h �89 [Aah (gl (x)-  92 (x))+ U o 92 (x)] 

pCAah ~ ~oo 
2n oo 01r coth a~he~e~d~ 

pCh ~ 
(Uo-Aah) ~ 02el~[e~r (3.4b) 

2n 

are corrections due to the bounding. The derivation of p~ and p' is analogous to that for pOO 
and pW in [7] while the derivation for p~ is similar to that for p~ in [8]. It is obvious that p" 
is the pressure when the dividing streamline ahead of the plate is held rigidly along the negative 
x-axis. For the case treated in [8], where the bounding was by walls on both sides, it was noted 
that p' was independent of the shear but instead depended on the location of the walls. Here we 
find that while the pressure on the side of the plate facing the wall confirms this, the pressure 
below the plate depends not only on the location of the other bounding but also on the shear. 
The fact that the discontinuity in p' is preserved even in the symmetric case (a = 1) reflects this 
dependence on shear; in fact such dependence on shear persists whenever the shear flow is 
weakly bounded. As expected, in the limit Aah--* Uo, the results obtained for p' here coincide 
with those presented in [8] since in this limit there is essentially no difference in the two bounded 
profiles as seen by the plate. 

The discontinuity in p' across the x-axis is in all cases, cancelled along the negative x-axis 
by p~. The latter corresponds to a local circulation around the plate in which the dividing 
streamline is displaced and, in particular, attaches behind the leading edge. It is clear from 
(3.4) that asymmetric bounding is a sufficient condition for inducing local circulation. Its 
existence does not depend on the use of walls and would still be present if our wall (Fig. 1) is 
replaced by a uniform stream moving at the corresponding velocity provided a ~ 1. 

Our primary interest lies in the comparative behaviors of these three pressures along the 
plate and its extension upstream. 

4. Distribution of pressure along the x-axis 

The expansion for p~ near the leading edge can be obtained directly but for p" and p* it is better 
to use the Fourier transforms 

- p Uo CM he I~ [ (coth [~[ h - 1), (4.1 a) 
F (r + 0) 

-apUoCMh e [r (coth a I~1 h -  1), (4.1b) 

~z(r + 0 ) =  ~ ._ -_ c ~pUoCh (-fle+fig2r162162 (4.2a) 

pACh (agle+f192e) + t_pUoCh~(~hecot  h aI~lh+flOae)l~}. (4.2b) 

The transforms must each be decomposed into functions regular in half planes. The asymp- 
totic expansions of these functions as r ~ oo then give the required behavior. We can for example 
write 

he I~l (coth }r h -  1) = F r  e 

where by the decomposition theorem (see Noble [12, p. 13]) 
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F| ++- 2~il _~ he(z ) [z I z-r176 dz. 

Because 6f the exponential convergence at z = _+ 0% the asymptotic expansion of F_+ can be 
obtained by writing 

( z -~)  -a = - (l + z/~ + z2/r z + ...)/r 

in its integrand and integrating term by term. Thus as r  oe 

1 {  a l a 2  } 
F |  a o + ~ + ~ +  ... (4.3) 

where the coefficients 

h"+2rcl ~-~o i n a , -  lim ~e(z) lz lz"(cothlz lh-1)dz  (4.4) 
- - c O  

are independent of h and can be shown to be related to the Riemann ~ functions. Thus 

pr(x, +0)= pUoCh~[ao+al(x/h)+O(xZ/h2)] as x--+ _ 0 ,  (4.5a) 

pr (x, - O) = pCAa �89 h �89 [ao + al (x/ah) + 0 (x2/aah)] as x ~  ___ 0 (4.5b) 

where 

ao = ((�89 = - 1.460 ; al = - � 8 8  ~'(-32) = -0 .653 .  

In dealing with ~t asymptotic behavior of 01 ,  and 02 .  for ~ large are needed. This is dealt 
with in Appendix A while Appendix B treats the remaining terms of interest so that 

pt(x, + 0 ) =  pUoCh-~[(2n)-~(AahUolbo+b2o)(x/h) -~ 

+AahUol(Clo-#2o-22o)+#2o+22o+O(x/h) ~] a s  x ~ + 0 ,  (4.6a) 

p' (x, - O) = - p Uo Ch- -} [(2rc)- ~ (Aah Uo 1 bo + b2o)(x/h)- ~ 

+AahUo*(dlo-#2o)+#2o+O(x/h)  ~] as x--++0 (4.6b) 
while 

p'(x, + 0 ) =  -pUoCh-�89 ~] as x-- - , -0 ,  (4.6c) 

p~(x, - 0 ) =  pUoCh-+[AahUot(d~o-#2o)+#zo+O(Ixl/h) �89 as x- -+-0  (4.6d) 

where bo (= b lo -b2o)  is a function of a (see Fig. 4); the coefficients b2o, Clo, dlo, #20 and 220 
are all defined in the appendices. [-The contribution of the first term in the equation for i ~ 
is contained in the 0 Ix I ~ terms in the last two formulas.] 

On the other hand direct expansion gives 

pcO(x, +0)= pUoClx[ -~ as x - - + - 0 ,  (4.7a) 

pcO (x, + O) = T 2pACx ~ as x--+ + 0 .  (4.7b) 

Since the pressure is continuous on the negative x-axis we must have 

clo+d10 = ( 1 - a - ~ ) a o  ; 220+2#20 = a o (4.8) 

a result we were unable to prove directly. 
To avoid the type of anomalous pressure behavior reported by Toomre and Rott, some care 

is needed in interpreting our results for pr and p~ when taking the limit of remote bounding 
(h--* oe in Fig. 1). In our case we must keep Aah fixed less than U0; otherwise there would be a 
reversal in the incident profile and boundary-layer theory would no longer be applicable. 
Furthermore, even in this limit infinite velocities are undesirable (el [7] ), so Ah must also be 
kept finite. 

As expected pt swamps p~ on the plate near the leading edge ; thus whenever there is local 
circulation at the leading edge the Li-Murray pressure gradient is relatively insignificant, 
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Ahead of the plate p~, which is independent of the shear is still dominant. 
Taking into account both sides of the plate, the Li-Murray effect on lift is 

8 ~pA Cx ~ 

for the first x units of the plate, whereas the lateral bounding (in this case due to the wall and 
uniform potential flow) gives two more important terms, namely 

- 2~ rc- ~ p Uo C (AahUo l bo + bzo) X ~ 

- pUoCh-~[AahUol(Clo+dlo-2#zo-22o)+2#zo+22o-AahUolaoa-~+ao]x 

= -2~rc-~pUoC(AahUolbo+b2o)X~-2pUoCh--~ao(1 -Aa~hUol)X.  (4.9) 

The importance of the inviscid pressure lies in its influence on the forces experienced by the 
plate. An O (x ~-~) pressure behavior outside the boundary layer is associated with a second 
order shearing stress O (x ~- 1) on the plate. In our case the leading term in pZ therefore leads to 
a non-integrable shearing stress on either side of the plate ; albeit since the stress is equal and 
opposite on the two sides at each x, there is cancellation and the total drag is zero. Then the 
next term in p~ and the leading term in p" jointly provide the main drag contribution O (x ~); 
this being more important than the Li-Murray drag O (x). Its domination in our case persists 
even when the bounding is symmetric. 

It should be emphasized that the effects of the bounding on the lift and drag will, in general, 
depend on both the nature of the lateral bounding imposed as well as the degree of asymmetry. 
Only for strong bounding are such effects totally independent of the shear. While, as stated 
earlier, asymmetry in the bounding is sufficient for inducing local circulation, it is not a neces- 
sary condition. To be sure, local circulation can also be induced by arranging different lateral 
boundings on the two sides of the plate. In particular we observe that for the symmetric case 
(a= 1, bl0 =0), both terms in equation (4.9) survive. 

The behavior of pr and p~ far from the leading edge are best investigated by expanding their 
transforms near the singularity (in the appropriate half plane) closest to the strip of regularity. 
Conditions far upstream are determined by the highest singularity in the lower half plane. 
In pr, this occurs at ~ = - ie/h followed by poles at ~ = - irc/h and at ~ = - i~/ah for p~ (x, _+ 0) 
respectively. We then find 

p"(x, + 0 ) =  -pUoClxl -~+O(e "x/h) as x ~ - o o ,  (4.10a) 

p" (x , -0 )=-pCaahJx l -~+O(e  '~/ah) as x ~ - o o .  (4.10b) 

The terms 01.  Ir [ coth Ir [ h and 01 .  Ir I coth a I~ I h in pl give exponentially small contributions, 
their highest singularity being at r = -rci/(1 + a)h. We therefore focus attention on the remain- 
ing terms in/~. Each of these has its highest singularity at ~ = - i s / h  where both 02 ,  and I~[ 
have branch cuts. The asymptotic behavior of 02 .  near r = 0 is treated in Appendix C. 

We find 

p~(x, +O)=pCh~(Uoh-~-A)(1-AahUol)[([xl/h)-~+O(lxl/h) -~] as x ~ -  oo, (4.11a) 

pt(x , -0)= -pACh+(1-AahUol)[(lxl/h)-~+O(lxl/h) -~] as x ~ - o o .  (4.11b) 

From (3.2) we find directly 

p~(x, 0)= pUoflxl  -~ as x - - . - o o .  (4.12) 

For the case of strong bounding (cf [7] and [8]), it was shown that while p~ and p"+p~ 
separately have algebraic behavior, their sum has exponential decay ; this curious cancellation 
is missing in our case since 

p(x, O)~ pUoC(1-AahUoa)(1-AhUol)lx[  -~ as x ~ - o o .  (4.13) 

Such algebraic behavior, typical of potential flow will always occur whenever the bounding is 
weak. Note that in the absence of shear (4.13) gives the correct result for the classical problem. 

Conditions far downstream are determined by the lowest singularity in the upper half plane. 
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In pr this occurs at ~ = 0 where h e has a branch cut. Only he 141 coth 141 h and he 14 ] coth a I~ I h 
contribute since the contribution from h e Ir O(e~)) is zero in the limit. 

Thus 

pr (x, + O) = - 2p Uo Ch-  ~ (x/h) ~ [1 + O (hZ/x 2) ] as x ~  ~ ,  (4.14a) 

p~ (x, - O) = - 2p CAa ~ h ~ (x/ah) ~ [1 + O (a z hZ/x 2) ] as x--* oo. (4.14b) 

Since 01 �9 and g2e have no singularities in the upper half plane, except for the branch cut for 
92e 14] at ~ = i~/h, the only other singularities are simple poles. 01e 1~1 coth I~lh and 0ze [~ [- 
coth L~lh have their lowest pole at ~=rci/h while that for 01e Ir coth a]~[h lies at rci/ah. 
Expansion of 02 �9 1~ I around ~ = 0 using the asymptotic expansion for 0z �9 derived in Appendix 
C then gives 

pt(x, + 0 ) =  O(e -~/h) as x ~ o o ,  (4.15a) 

pZ (x, - O) = - p Uo Ch-~(1 - Aah Uo 1) I(x/h)-~ _ -~l~ (x/h)-  2 + ~2 lo (x/h)-3 log (x/h) 

+ y (x/h)-3 + 0 ((x/h)-3 (1 + log (x/h))) z + . . .  I as x ~ oc (4. 1 5b) 
where J 

2 
= ~ [(log 02~- �89  d 

lo, la and 02 having been defined in Appendix C. Again, direct expansion gives 

p~~ __0)= -T-2pACx ~ as x ~ .  (4.16) 

Far downstream the pressure gradient on either side of the plate tends to zero. For the 
lateral bounding considered by Toomre and Rott, the pressure gradient far downstream 
becomes vanishingly small compared with the Li-Murray value p2; since p" +p~ provides 
cancellation for p~. However for the bounding considered in [7] no such cancellation was 
provided by their p~ (analogous to p" +p~). Since both forms of bounding are present in our 
case there is some interest in seeing how the behavior downstream is modified. 

We indeed find that for symmetric bounding (a= 1), px(X, +0) calculated from equations 
(4.14)-(4.16) agrees with Ludford and Olunloyo's value : below the plate p~, provides cancellation 
for p~ thereby reproducing Toomre and Rott's result; the correction in either case being 
O(x/h) -~ is relatively insignificant. Otherwise stated, the behavior of the pressure far down- 
stream is more strongly influenced by the form of bounding than by discontinuities in the 
incident profile at the leading edge of the plate. 

The log terms (el equation (4.15b)) which, for the first time, now appear in the inviscid 
pressure will induce corresponding terms in the boundary layer. It has been well known for 
some time that such log terms can arise in first order boundary layer solutions (see Van Dyke's 
1964 treatment of the parabola in a uniform stream [13] ) and in 3rd and higher orders boundary 
layers (Goldstein [14]). However, only recently (1972) has it been reported in the literature 
of second order boundary layer theory (see Kapila et al. [11] ). Such log terms, since they are 
missing in [7] and [8] and only occur below the plate here, can only be associated with weak 
bounding. 

We again find from equations (4.14)-(4.16) that the pressures above and below the plate 
are different so that a global circulation of 0 (v +) is induced by equalizing them at some station 
downstream. Such a global circulation will now be considered in detail. 

5. Induced global circulation 

The global circulation can be found either by conformal transformation or by the Wiener-Hopf 
technique. We choose the latter partly for uniformity but chiefly because the detailed behavior 
of the circulation pressure pC is more readily displayed. 
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The problem is to find a potential function ~c which dies out as y ~  - oo and takes on the 
boundary values 

7JC(x, h) = 0,  (5.1a) 

~(x,++_O)={g~(x) for x < 0 ,  (5.1b) 
r for x > 0  

and 

A~';(x, 0) = ~';(x, +0) -~ ' ; (x , -0 )  =/0c for x < O ,  (5.2) 
f(x) for x > 0  

where gO(x) and f(x) are unknown. On taking the Fourier transform we immediately write 

,-c _ , sinh ~ (h-y)  

[(~%+Se) e 1~1' 

satisfying the boundary values (5.1). 
Here 

~. = r 1 6 2  

corresponding to 

{09 f~ x < 0 '  
s(x) = 

o for x > 0 .  

for O < y < h ,  
(5.3) 

for y < 0  

The jump condition (5.2) now gives the Wiener-Hopf equation 

KO% +~eh Ill (coth I~lh+ 1) = - h f e  

where the kernel 

K = h}~l (coth I l l h + l )  

is easily factorized as 

K = K z c K 2 e  . 

[Note that K2r and K2e were defined in section 2.] 
In the overlap strip -e /h  < Im ~ < 0 we can rewrite (5.4) as 

hL 
- -C  C C g c K z e - P e  = Pe - - -  

K2e 
where 

(5.4) 

(5.5) 

P ~ = - s e ( K 2 e ( ~ ) - K 2 e ( 0 ) ) = - s e ( K 2 r  P ~ =  - S e  

so that the left-hand side of (5.5) is regular in the upper half plane Im ~ > - e/h and the right- 
hand side is regular in the overlapping lower half plane Im ~ < 0. Together the two sides form 
an entire function which, in order to guarantee an integrable lift at the leading edge, must be 
set to zero. 

Thus 

Substitution of 0~ into the formula (5.3) now gives the circulation streamfunction. 
In particular, to find the asymptotic behavior of the circulation pressure pC in different 

regimes of the x-axis we look at its transform 
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~G 

{pUo(l~l + pA (0~ +sG) coth ]~lh) 

pc(~, +0)=  g~l~l 
-pUo K2, 

Following the procedure outlined in section 4, we find 

pC(x, -4-0)= pUoOoh -~ [ +_a(x/h)-~+(ch+ Ah/Uo)+ O(x/h) ~3 as x---, +0  

~2-- 1 
2n~ ' 

where 
1 

a S -  o- 2~' 
2ncq = 3rcc~ 2 = 1 

and 
pC(x, O)= pUoOo h-1 [(5+ Ah/Uo+O(lx[/h) ~] as x ~  - 0 .  

(5.7) 

(5.8) 

(5.9) 

(5.10) 

These formulas indicate that near the leading edge pC behaves like pt providing a lift 

4apUo(x/h) ~ , 

however unlike pt it has no O (x) lift term. The drag contribution, like in pt is again 0 (x). 
For the behavior far ahead of the leading edge we obtain 

pC(x, + 0 ) =  pVoh-lOo[h/~x+(1-O2)hZ/r~2x2+o(ha/x3)] as x ~ - o o  (5.11) 

while far downstream we find 

pC(x, + 0 ) =  pr  Uoh-l+O(e-~/h)] as x ~ o o ,  .(5.12a) 

pC (x, - O) = pOo [A + Uo h -~ { (Trxlh) -~ + (~xlh)-  2 log (x/h) 

+p(xx/h)-z+O(x -z log x)Z+...}] as x--.oo (5.12b) 

where p = (log 0 2 + 0 2 - 2 - 1 o g  2). 

Here again log terms are present below the plate; in addition the x-  1 term in the last formula 
induces a resonance that will be discussed in the next section. 

We have so far avoided discussing the disposable constant 0o, the total flux anticlockwise 
around the plate. Different values for ~o can be arranged but of main interest is its value when 
the total pressures above and below the plate are equalized at some station x = x~o far down- 
stream. From the results (4.14)-(4.16) and (5.12) we conclude 

~o = 2 Uo ~ Cx~o [Uo+Ah+O(x~o) -2] 
is the strength of the global circulation. It is not a function of a, reflecting its independence of 
the degree of asymmetry in the bounding. 

6a. The second-order boundary layer near the leading edge 

Li's original aim was to find the effect of free-stream vorticity on the shearing stress at the plate. 
To accomplish this the second-order boundary layer matching the disturbed inviscid flow 
must be determined. In [8] it was shown that it has three components, due to (i) the circulation ; 
(ii) the walls [discussed years ago (1953) by Kuo [15] in a different context] ; and (iii) the shear 
(Li-Murray). The first provides a non-integrable but cancelling drag from the top and bottom 
of the plate, the second O (x~), and the third O (x). Not only is the latter the least important but 
there is also cancellation along the whole length of the plate as can be seen a priori, so that the 
original question does not have much substance anyway! 

A detailed discussion of these boundary layer solutions near the leading edge has been 
given in [8] and will not be repeated here. Instead we deduce that for our case the leading edge 
drag for the top of the plate is 
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- 0.9962 [fl/2 { (#ao + 22o)(1 - Aah [2o x)+ ao 

+ AahUol  clo}+CO~o]R-l pUZh~x ~ (6.1a) 
where 

R = Uoh/v (Reynolds Number) ; ~o = R~Oo/Uo h 

while for the bottom we obtain 

-0 .9962[f l /2  { - # 2 o ( 1 - a a h U o 1 ) + a o a - ~ - d l o } + C S ~ o ] R - l  pU2h-~x ~ . (6.1b) 

The most important contribution (ignoring the Imai effect) to the leading edge drag then comes 
from summing the expressions (6.1a, b). While ~o depends on the station where the pressures 
are equalized downstream [(5 being readily computed from (5.9)], the remaining coefficient 

220 + ao + Aah U o ' (a o a - ~ + 6o) (6.2) 
where 

60 = ( c l o - d l o - , ~ , 2 o )  

depends on both the shear A, and the degree of asymmetry in the bounding. Fig. 4 displays 
6o as a function of a. From this graph and the relations (4.8) and (B.1) the coefficients Clo and 
dlo which occur in (6.1) can be evaluated. Only in the presence of strong bounding is this coef- 
ficient independent of shear. 

bo,~ 

O.7 

O.fi 

0.2 

0.1 

o da 0.'4 o16 d8 "-7o "~ 
Figure 4. Variation of the coefficients bo, ~o with the degree of geometrical asymmetry a in the bounding. 

6b. The second-order boundary layer far downstream 

We are interested in the boundary layer downstream only to the extent that it exhibits a new 
phenomenon. Accordingly, attention is restricted to the induced global circulation. 

Referring velocities and lengths to Uo and to h respectively and then using the non dimen- 
sionalized x and t/as independent variables we can represent the streamfunction in the boun- 
dary layer far downstream as 

V = R-~[X+Jo(q)§  tl)+ ...] 
where 

Y =  R~y ; q =  Y /2x  ~ 

and fo is the Blasius function. On retaining terms up to O(R-1)  we obtain for g(x, q) 

O,,,, + fog,,, + 2fg 9,, + f; '  9n - 2x (f; g . .~-  fd" ax) = 0 (6.3) 

with 

g(O) = 9,(0) = 0 ; g, = F(x, 0)+a.e.s. in q as q+oo 

where the forcing function 

Journal of Engineerin9 Math., Vol. 7 (1973) 327-345 



340 V. O. S. Olunloyo 

F (x, 0) = 2x ~ t~, (x, 0) 

and fly (x, 0) is the non-dimensionalized disturbance velocity. 
Since the boundary layer must match the inviscid flow outside it, the form assumed for 9 (x, r/) 

thereby depends on F (x, 0). 
Above the plate we find 

F (x, + 0) = - 2t~o x + + a.e.s. (6.4) 

and for its associated boundary layer we write 

g(x, tl)= Elx~fl(tl) + • DzxZGz(tl). (6.5) 
2 

Here the first term in (6.5) is found by direct matching with (6.4) while the second consists of 
the eigensolutions (2 being the eigenvalue and Gz the corresponding eigenfunction) satisfying 
the differential equation 

L~ (Gz) = 0 (6.6) 

with 
G ~ ( 0 ) = G ] ( 0 ) = 0 ;  G~=a.e.s. in I/ as q - ,oo .  

The operator 
L ~ d  3 d 2 d } 

Lx - dq [dt/3 + fo ~2  + (1-22)f~  ~ + 22f~' 

but E 1 and D z are arbitrary constants. Libby and Fox [10] in treating the above problem 
have shown that the eigenvalues are all negative and form a countable set the first few being 

- �89 - 1.387, - 2.314, - 3.5, - 4.24 . . . .  Unlike El, the Dx cannot be found by direct matching 
but instead depend on the global character of F(x, 0) (see Wilson [16]). 

For this case we find 
. 1 E1 = --,~0 ~ 0~-- 2 

so that the leading term in the boundary layer expansion is the O (x ~) forcing function followed 
by the O(x -~) eigensolution, the remaining eigensolutions following in order. 

Below the plate a curious resonance is induced in the boundary layer. This is because 

F(x, - 0 ) =  -2rCffo [x-4+x -~ log x+px-}+O(x -§ log z x)] 

has as its leading term, x -§ whose exponent coincides with the first eigenvalue ( 2 = - � 8 9  in 
the boundary layer eigensolutions. Our 9 (x, 1/) must then assume the form 

9 (x, ,)  = - 2redo Ix -~ Hx (I/) + O_�89 -} log xG_4 (tl) 

+ D_~.387x- ~'a87 G_L387(tl)+ E2x -log xfz(tl)+ ...] 

(6.7) 
which when substituted into (6.3) yields 

= 0 

as the governing equation for G_~(t/) with 

G _ ~ ( 0 ) = G ' ~ ( 0 ) = 0 ;  G '~=a .e . s .  in I/ as q~oo  
and 

L_�89 1 (r/)) = 2(f• G"~ -f~" G_~) (6.8) 
with 

H I ( 0 ) = H ~ ( 0 ) = 0 ;  H i = l + a . e . s .  as q--*~.  

The solution for G_ 4 01) was discussed years ago (1948) in a different context by Alden [ 17]. 
To be sure 
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= & ( . f d - f o )  

where A2 is an arbitrary constant to be determined consistent with (6.8). This is easily done by 
invoking a modified version of a trick originally attributed to Devan (see Van Dyke [13]). 
For our case A 2 =  --0.85. 

Here again the E, are found by direct matching with F(x, 0-) whereas the Dz cannot be 
found without investigating a region 0 (R-1) at the leading edge of the plate. 

Such resonance as found here is suppressed by the presence of walls: it is independent of 
shear and persists as the bounding recedes. In fact it can be shown to be present in the Li-Murray 
case by (realistically) admitting induced global circulations. 

Appendix A: Asymptotic behavior of gl ~ and g2~ for ~ large 

Some terms in pZ involve g2 (x), whose asymptotic behavior as x ~ O -  is determined by that 
of its transform as ~ .  

The transform is given by the result 

02 ,  = P2 /K2  

where P2~ and K z ,  are given by equations (2,14) and (2.16) respectively. Because of the ex- 
ponential convergence at z = + ~ ,  the asymptotic expansion of P2,  can be obtained by writing 

- 1  : _ ( 1 +  + z2 /r  + 

in its integrand and integrating term by term. Thus 

P2, (~) ~ - ~1 {b20+b21/h~ +b22/ha ~ 2 + ...} 

where the coefficients 

h"+l ~ fie(z)lzlz"(c~ 
b2,= 2--~- Kze (z) dz (A.1) 

are easily seen to be independent of h. They can be evaluated numerically by integrating along 
the real axis (after subtracting the z -} singularity at the origin in the case of bzo). 

The asymptotic behavior of Kze follows from Stirling's formula namely 

K z .  (Q = - ( -  2i~h) +- (1 + 0 (1/~)), 

we therefore find 

02, = [ir ( -  2i~h) -~3 -x (b2o + 0 (l/ l)) .  (A.2) 

By following the same procedure we can write 

1 {blo+bll/h~+blz/hZ~2 + ...} nl ~ (~) "~ - 

where 
h "+1 ~ ~e(z)z "+1 sinh z(1 -a)h  

b l" - 2re j Kt e (z) sinh zh sinh azh 
dz (A.3) 

so that for large 

.01~ = [i~ ( -  2i~h) ~] -1 (b l o + O (1/~)). (A.4) 

The bl, are functions of a, the degree asymmetry whereas the bzn are  constants (for example 
b2o = -0.760). The importance of bt0 and b2o is to be found in their contribution towards the 
leading edge lift (cf eq. 4.9). 

From the above results for 01, and 92~ we deduce that their contribution through the first 
term in eqs. (3.4a, b) for pt is zero on the plate and is O(Ixl ~) ahead of the plate as was noted 

�9 I 

under equation (4.6). 
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Appendix B: Asymptotic behavior of the Q parts of terms like O2e ] ~ [ coth [ ~ ] h in ~! for large 

The asymptotic behaviors of the integrals in equations (3.4) as x ~  + 0 are determined by those 
of the | parts of their transforms as 4--* ~ .  

We can illustrate the results by considering 

02el41 coth 141h = F = FI+F 2 
where 

F~ = 02el~l(cothl f f lh-1)  ; /72----- 02,141. 

Following the decomposition theorem (Noble [-12, p. 13]) 

F 1 = Fie+Fie 
with 

F1 +_ ~1 ~]~g2e(z)lz[(cothlz[h-1)z_4 dz. 

We can exploit the exponential convergence provided by (coth Izl h-1) so that for large 4 
we obtain 

1 
FI| --- Yr ~ (220+221/~h+222/~2h 2 + ...) 

where the coefficients 

h" + ~ r ~ 
2Zn -- 2~ ~ ~tze(z) lz lzn(coth [ z ] h - 1 ) d z  

- - o 0  

are easily checked to be constants independent of h. In particular 

220 = -0 .175 .  (B.1) 

Next we write F2 as the sum of a @ and a Q function with 

Here 

1 I~]  (Oze(z)-gz09)lZldz+ ~ dz]. F 2 O  = - - -  lim ~ g209 [zl 
2rti ~ o  oo z - 4  -oo z - r  

b2o  

g2~(z) = i(_2ih)�89 ~ 

is the leading term in the asymptotic expansion of g2 �9 (Z) given in (A.2). Completing the contour 
in the lower half plane gives 

F 1 lim " g2oo(z)lzl ( b2o 1~ (B.2) 
2~i~ o -~ z -~  dz= \i(-2ih~)*/ e 

The remaining integral in FEe can be rewritten as 

[~ f09 1 f~176 [z[(Oze-g2~176 zdzl" 1 lim [zl(g2e(z)-g2~)dz - ~ _~ z - r  
2r~i ~-*o - oo 

Both of these integrals are convergent since 

gze(z)-g2~ = O(z -~) as z~oo  

so that 

1 f ~ (g2.-g2oo)lZldz=It2o 
2rci -oo z - r  ~ + 0(r 

w~aere 

It2o = ~ _ Izl(g2e(z)-g2o~)dz. (B.3) 
09  
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Accordingly, 
b2o #20 

FEe -- i(_2i4h) r + / ~  + O(4-~).  (B.4) 

The function F2e can be treated the same way ; the only difference is that the integral (B.2) is 
now zero since the point ~ now lies in the upper half plane. Thus 

F2 ~ -- ,//20 2) i4h + 0 (4 -  �9 (B.5) 

Hence if we write 

then 

and 

g2e141 coth141h = F e + F  e 

b2o 22o+~2o 
F e -  i (-2i4h)  ~ + i 4 ~  + O(4-~) (B.6) 

220+1"/20 2) 
F e -  i 4 ~  + 0 (4- �9 (B.7) 

Similarly we can write 

01e 141 cothl41h = G e + G e  

where 
blo clo 

G e - i(_2i~h) ~ + / ~  + O(~ -~) (B.8) 

and 

Gr - Clo i4h + 0 (3- 2). (B.9) 

Here 

Clo = 7o+~o,  

h f ~o = f ~ l i m  O~e(z)[zl(coth I z l h - 1 ) d z ,  (g.lO) 
e - *  O - -  cO 

and hf ( 
~o= ~ Izl O ~ , ( z )  . ~ . . , ,  -0o t(_2~h)~4. / dz. (B.11) 

Finally we write 

Oxe 141 coth a l 4 1 h = R e + R  e 

where 
blo dlo 

R e - i(_2i4h) �89 + ~-~ + 0(~ -~) 

and 
dlo 

R e -  i4h -t- 0(3 -2) 

with 
dlo = 30+70 

and 

gl o = ~ 1 ~  01e(z ) l z l ( co tha l z lh -1 )dz  
e 0 -cr 

is, like ~o, a function of a. 
Inversion of the results (B.4-14) now gives the formulas (4.6). 

(B.12) 

(B.13) 

(B.14) 
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Appendix C: Asymptotic behavior of ~2e for small 

When Im ( ~  1, the integral P2e (2.14) involved in 02. can be written as 

h [~r 
P2. = ~ Kze(Z)(Z_~ ) 

-1)d z + f ~ no(z)lzl(coth I z l h - l )  
~+~/2h K2e(Z)(Z--O dz 

+ rci he(Olr I~ lh -1 ) ]  (C.1) 
3 

where the path of integration has been deformed onto the real axis indented both at the origin 
and in the neighborhood of the point r 

To obtain tractable integrals we rewrite the integrals in (C.1) as 

h 
2rci 

[~r {Izl(cothlzlh-1) Am(z)~ 
KO(z)j dz 

+ Izl(cothlzlh-1) Am(z)~ 
~+e]2h Kze(Z) KO(z)j dz 

i'-~/2h ne(z)Am(z) j= ne(z)Am(Z) z] 
+ K ~ (z) dz + K ~ (z) d 

. -  oo r + e /2h  

(C.2) 

where Am (z) is the first m + 1 terms in the asymptotic expansion of z coth zh for small z and 
K ~ (z) is the asymptotic expansion for K2e (z) for z small. 

In the limit r  the first two integrals in (C.2) now combine to give 

h ~ ~e(z){lzl(cothlzlh-1) Am(Z)~dz (C.3) 
-~o z-~ Kze(Z) K~ 

which has the asymptotic expansion 

h [/o + la ( -  i~h) + l 2 ( -  i~h) 2 +. . . ]  (C.4) 

where 
f ~ he(Z)~[z[(c~ Am(z)~ l . -  ( - ih ) -"  lim z,+~ [ K~) )dz .  (C.5) 

2n ~-.o - o~ K2e (z) 

The series (C.4) is obtained by writing 

(z-~)  -~ = (1 +~/z+~2/z2+ ...)/z 

in the integrand in (C.3) and integrating term by term. 
On the other hand, completing the contour in the lower half plane shows that the last two 

integrals in (C.2) 

f f r he (Z) A re(z) dz + K ~ (z)(z- 4) l_ K~ (0 J 
,-oo K~ 

so that as ~ 0  

0 2 ,  ~ hfie(r162 +~ coth ~h-Am(r +hK~ ~ 1.(-i~h)" 
n = 0  

where 

k = 2  p = O  

~(~2+e2/h2)~( n_ [~+(~2+e2/h2)~l)_i~h(1 ~ ) } P  
x [ ~r \ 2  + /log h e --re - log 

(C.6) 
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is the asymptotic expansion for ( l /K2,  (r for small ~. Here, Ok which is tabulated (Ab~amowitz 
and Stegun [18 p. 256]) comes from writing 

1 = 1 + Ok - -  for small~. 
k = 2  

In contrast 0 t ,  gives no difficulty near ~ = 0 since it is regular there. This is because a series 
representation for P1, can be found by completing the contour for the integral (2.11) in the 
lower half plane. 
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